⚠️ 以下所有内容总结都来自于 大语言模型的能力,如有错误,仅供参考,谨慎使用
🔴 请注意:千万不要用于严肃的学术场景,只能用于论文阅读前的初筛!
💗 如果您觉得我们的项目对您有帮助 ChatPaperFree ,还请您给我们一些鼓励!⭐️ HuggingFace免费体验
2025-08-12 更新
MotionSwap
Authors:Om Patil, Jinesh Modi, Suryabha Mukhopadhyay, Meghaditya Giri, Chhavi Malhotra
Face swapping technology has gained significant attention in both academic research and commercial applications. This paper presents our implementation and enhancement of SimSwap, an efficient framework for high fidelity face swapping. We introduce several improvements to the original model, including the integration of self and cross-attention mechanisms in the generator architecture, dynamic loss weighting, and cosine annealing learning rate scheduling. These enhancements lead to significant improvements in identity preservation, attribute consistency, and overall visual quality. Our experimental results, spanning 400,000 training iterations, demonstrate progressive improvements in generator and discriminator performance. The enhanced model achieves better identity similarity, lower FID scores, and visibly superior qualitative results compared to the baseline. Ablation studies confirm the importance of each architectural and training improvement. We conclude by identifying key future directions, such as integrating StyleGAN3, improving lip synchronization, incorporating 3D facial modeling, and introducing temporal consistency for video-based applications.
人脸替换技术已在学术研究和商业应用中都受到了广泛关注。本文展示了我们对SimSwap的实施和改进,SimSwap是一个高效的高保真人脸替换框架。我们对原始模型进行了几项改进,包括在生成器架构中集成了自注意力和跨注意力机制、动态损失加权和余弦退火学习率调度。这些增强功能在身份保留、属性一致性和整体视觉质量方面带来了显着改进。我们的实验结果,跨越40万次训练迭代,证明了生成器和鉴别器性能的不断改进。增强模型在身份相似性、FID得分和定性结果方面相比基线有明显的优势。消融研究证实了每个架构和训练改进的重要性。最后,我们确定了关键的未来方向,例如集成StyleGAN3、提高唇部同步、融入3D面部建模,以及为视频应用引入时间一致性。
论文及项目相关链接
PDF 8 pages, 7 figures, 5 tables. This is a student research submission from BITS Pilani, Hyderabad Campus. Our implementation enhances SimSwap with attention modules and dynamic training strategies
Summary
本文介绍了Face Swapping技术中的SimSwap框架的改进与实施。通过引入自注意力与交叉注意力机制、动态损失权重和余弦退火学习率调度等方法,显著提高了身份保留、属性一致性和整体视觉质量。经过40万次训练迭代,生成器和鉴别器的性能逐步改进,增强模型在身份相似性、FID得分和定性结果上均优于基线。消融研究证实了架构和培训改进的重要性。未来的研究方向包括集成StyleGAN3、改进唇部同步、引入3D面部建模和针对视频应用的时态一致性。
Key Takeaways
- SimSwap框架被改进并用于Face Swapping技术,提高了身份保留和视觉质量。
- 引入自注意力与交叉注意力机制以改进生成器架构。
- 采用动态损失权重和余弦退火学习率调度以提高训练性能。
- 经过40万次训练迭代,生成器和鉴别器的性能得到逐步改进。
- 增强模型在身份相似性、FID得分和定性结果上优于基线。
- 消融研究证实了架构和培训改进的重要性。
点此查看论文截图







