⚠️ 以下所有内容总结都来自于 大语言模型的能力,如有错误,仅供参考,谨慎使用
🔴 请注意:千万不要用于严肃的学术场景,只能用于论文阅读前的初筛!
💗 如果您觉得我们的项目对您有帮助 ChatPaperFree ,还请您给我们一些鼓励!⭐️ HuggingFace免费体验
2025-09-11 更新
XOCT: Enhancing OCT to OCTA Translation via Cross-Dimensional Supervised Multi-Scale Feature Learning
Authors:Pooya Khosravi, Kun Han, Anthony T. Wu, Arghavan Rezvani, Zexin Feng, Xiaohui Xie
Optical Coherence Tomography Angiography (OCTA) and its derived en-face projections provide high-resolution visualization of the retinal and choroidal vasculature, which is critical for the rapid and accurate diagnosis of retinal diseases. However, acquiring high-quality OCTA images is challenging due to motion sensitivity and the high costs associated with software modifications for conventional OCT devices. Moreover, current deep learning methods for OCT-to-OCTA translation often overlook the vascular differences across retinal layers and struggle to reconstruct the intricate, dense vascular details necessary for reliable diagnosis. To overcome these limitations, we propose XOCT, a novel deep learning framework that integrates Cross-Dimensional Supervision (CDS) with a Multi-Scale Feature Fusion (MSFF) network for layer-aware vascular reconstruction. Our CDS module leverages 2D layer-wise en-face projections, generated via segmentation-weighted z-axis averaging, as supervisory signals to compel the network to learn distinct representations for each retinal layer through fine-grained, targeted guidance. Meanwhile, the MSFF module enhances vessel delineation through multi-scale feature extraction combined with a channel reweighting strategy, effectively capturing vascular details at multiple spatial scales. Our experiments on the OCTA-500 dataset demonstrate XOCT’s improvements, especially for the en-face projections which are significant for clinical evaluation of retinal pathologies, underscoring its potential to enhance OCTA accessibility, reliability, and diagnostic value for ophthalmic disease detection and monitoring. The code is available at https://github.com/uci-cbcl/XOCT.
光学相干断层扫描血管造影术(OCTA)及其衍生的端面投影图像为我们提供了视网膜和脉络膜血管的高分辨率可视化图像,这对于视网膜疾病的快速准确诊断至关重要。然而,由于运动敏感性和常规OCT设备软件修改的高成本,获取高质量的OCTA图像具有挑战性。此外,现有的用于OCT到OCTA转换的深度学习方法往往忽略了视网膜各层之间的血管差异,并且在重建用于可靠诊断的复杂而密集的血管细节方面存在困难。为了克服这些限制,我们提出了XOCT,这是一种新型深度学习框架,它结合了跨维度监督(CDS)和多尺度特征融合(MSFF)网络进行分层血管重建。我们的CDS模块利用通过分割加权z轴平均生成的2D逐层端面投影作为监督信号,迫使网络通过精细的针对性指导来学习每个视网膜层的独特表示。同时,MSFF模块通过多尺度特征提取和通道重新加权策略增强血管轮廓描绘,有效地捕获多个空间尺度上的血管细节。我们在OCTA-500数据集上的实验证明了XOCT的改进效果,特别是对于用于评估视网膜病理情况的端面投影图像,这突显了其在提高OCTA的可访问性、可靠性和眼科疾病检测和监测的诊断价值方面的潜力。相关代码可访问于https://github.com/uci-cbcl/XOCT。
论文及项目相关链接
PDF 11 pages, 3 figures, Accepted to MICCAI 2025
Summary
OCTA技术及其衍生的en-face投影为视网膜和脉络膜血管提供高分辨率可视化,对视网膜疾病的快速准确诊断至关重要。针对OCTA图像获取的挑战和现有深度学习方法的不足,我们提出了XOCT框架,结合Cross-Dimensional Supervision(CDS)与Multi-Scale Feature Fusion(MSFF)网络进行层感知血管重建。CDS模块利用2D层式en-face投影作为监督信号,引导网络学习各视网膜层的独特表示。MSFF模块通过多尺度特征提取和通道重权策略,有效捕捉多空间尺度的血管细节。在OCTA-500数据集上的实验证明了XOCT的改进效果,特别是在对视网膜病理的临床评估中具有重要的en-face投影,提高了OCTA的可访问性、可靠性和诊断价值。
Key Takeaways
- OCTA技术能高分辨率可视化视网膜和脉络膜血管,对视网膜疾病的快速准确诊断至关重要。
- OCTA图像获取存在运动敏感性和高成本软件修改的挑战。
- 现有深度学习方法在OCT到OCTA的翻译中忽视了血管在视网膜层之间的差异,难以重建用于可靠诊断的复杂密集血管细节。
- 提出的XOCT框架结合了Cross-Dimensional Supervision(CDS)和Multi-Scale Feature Fusion(MSFF)网络进行层感知血管重建。
- CDS模块利用2D层式en-face投影作为监督信号,引导网络学习各视网膜层的独特特征。
- MSFF模块通过多尺度特征提取和通道重权策略,有效捕捉血管细节。
点此查看论文截图


