⚠️ 以下所有内容总结都来自于 大语言模型的能力,如有错误,仅供参考,谨慎使用
🔴 请注意:千万不要用于严肃的学术场景,只能用于论文阅读前的初筛!
💗 如果您觉得我们的项目对您有帮助 ChatPaperFree ,还请您给我们一些鼓励!⭐️ HuggingFace免费体验
2025-09-18 更新
Reaction rates with temperature-dependent cross sections: A quantum dynamical microscopic model for the neutron capture reaction on the $^{188}$Os target
Authors:N. Lightfoot, A. Diaz-Torres, P. Stevenson
The neutron capture process plays a vital role in creating the heavy elements in the universe. The environments involved in these processes are, in general, high in temperature and are characterized by two distinct reaction mechanisms: the slow and rapid neutron capture processes. In this work, the slow neutron capture process is described with the time-dependent coupled channels wave-packet (TDCCWP) method that uses both a many-body nuclear potential and an initial temperature-dependent state to account for the thermal environment. To evaluate the role of a mixed and entangled initial state in the temperature-dependent neutron capture cross section, TDCCWP calculations are compared with those from the coupled-channels density matrix (CCDM) method based on the Lindblad equation. The importance of the temperature of the environment is then explored in the n+$^{188}$Os reaction with a decrease of cross section with increasing temperature, along with a decrease of $10%$ in reaction rates for the highest incident energies studied, which are important in the rapid neutron capture process.
中子捕获过程在宇宙中重元素的产生中起着至关重要的作用。这些过程所涉及的环境通常温度较高,并表现出两种截然不同的反应机制:慢化中子捕获过程和快速中子捕获过程。在这项工作中,采用与时间相关的耦合通道波包(TDCCWP)方法描述慢化中子捕获过程,该方法使用多体核势和初始温度状态来模拟热环境。为了评估混合纠缠初始状态在温度依赖的中子捕获截面中的作用,将TDCCWP方法与基于Lindblad方程的耦合通道密度矩阵(CCDM)方法进行了比较。然后,在n+$^{188}$Os反应中探索了环境温度的重要性,随着温度的升高,截面有所降低,并且在所研究的最高的入射能量下,反应速率降低了10%,这在快速中子捕获过程中很重要。
论文及项目相关链接
PDF 9 pages, 7 figures
Summary
中子俘获过程在宇宙中创造重元素时起到关键作用。本文描述了慢化中子俘获过程的时间依赖性耦合通道波包(TDCCWP)方法,使用多体核势和初始温度相关状态来模拟热环境。同时,通过将TDCCWP方法与基于Lindblad方程的耦合通道密度矩阵(CCDM)方法进行对比,评估了初始状态混合和纠缠在温度依赖性中子俘获截面中的作用。环境温度的重要性在n+$^{188}$Os反应中得到探索,随着温度的升高,截面下降,最高入射能量下的反应速率下降10%,这对快速中子俘获过程具有重要意义。
Key Takeaways
- 中子俘获过程对于宇宙中重元素的产生具有关键作用。
- 慢化中子俘获过程可以通过时间依赖性耦合通道波包(TDCCWP)方法进行描述。
- TDCCWP方法考虑了多体核势和初始温度相关状态以模拟热环境。
- 初始状态的混合和纠缠对温度依赖性中子俘获截面有影响。
- 通过将TDCCWP方法与耦合通道密度矩阵(CCDM)方法的比较,进行了评估。
- 在n+$^{188}$Os反应中探索了环境温度的重要性。
点此查看论文截图





Emphasising Structured Information: Integrating Abstract Meaning Representation into LLMs for Enhanced Open-Domain Dialogue Evaluation
Authors:Bohao Yang, Kun Zhao, Dong Liu, Chen Tang, Liang Zhan, Chenghua Lin
Automatic open-domain dialogue evaluation has attracted increasing attention, yet remains challenging due to the complexity of assessing response appropriateness. Traditional evaluation metrics, typically trained with true positive and randomly selected negative responses, tend to assign higher scores to responses that share greater content similarity with contexts. However, adversarial negative responses, despite possessing high lexical overlap with contexts, can be semantically incongruous. Consequently, existing metrics struggle to effectively evaluate such responses, resulting in low correlations with human judgments. While recent studies have demonstrated the effectiveness of Large Language Models (LLMs) for open-domain dialogue evaluation, they still face challenges in handling adversarial negative examples. We propose a novel evaluation framework that integrates Abstract Meaning Representation (AMR) enhanced domain-specific language models (SLMs) with LLMs. Our SLMs explicitly incorporate AMR graph information through a gating mechanism for enhanced semantic representation learning, while both SLM predictions and AMR knowledge are integrated into LLM prompts for robust evaluation. Extensive experiments on open-domain dialogue evaluation tasks demonstrate the superiority of our method compared to state-of-the-art baselines. Our comprehensive ablation studies reveal that AMR graph information contributes substantially more to performance improvements. Our framework achieves strong correlations with human judgments across multiple datasets, establishing a new benchmark for dialogue evaluation. Our code and data are publicly available.
自动开放域对话评估已经引起了越来越多的关注,但由于评估响应适当性的复杂性,它仍然具有挑战性。传统评估指标通常与真实正面和随机选择的负面响应进行训练,倾向于给那些与上下文内容相似性更高的响应赋予更高分数。然而,对抗性负面响应尽管与上下文具有高度的词汇重叠,但语义上可能不相符。因此,现有指标很难有效评估此类响应,与人类判断的相关性较低。尽管最近的研究已经证明大型语言模型(LLM)在开放域对话评估中的有效性,但它们仍然面临处理对抗性负面示例的挑战。我们提出了一种新的评估框架,该框架结合了抽象意义表示(AMR)增强的领域特定语言模型(SLM)和LLM。我们的SLM通过门控机制明确融入AMR图信息,以促进语义表示学习,而SLM预测和AMR知识都被纳入LLM提示中,以实现稳健的评估。在开放域对话评估任务上的大量实验表明,我们的方法优于最新基线。我们的综合消融研究结果表明,AMR图信息对性能提升贡献更大。我们的框架在多个数据集上与人类判断的相关性很强,为对话评估建立了新的基准。我们的代码和数据已公开可用。
论文及项目相关链接
PDF EMNLP 2025 Findings
Summary
基于自动开放域对话评估的挑战性,现有评估方法更侧重于内容相似性而忽视语义一致性。本文提出结合抽象意义表示(AMR)增强领域特定语言模型(SLM)与大型语言模型(LLM)的新评估框架。通过门控机制融入AMR图信息提升语义表示学习,并将SLM预测和AMR知识融入LLM提示中,实现稳健评估。该框架在开放域对话评估任务上表现优越,与人类判断高度一致。
Key Takeaways
- 开放域对话评估面临挑战,现有方法更关注内容相似性,忽视语义一致性。
- 对抗性的负例响应与上下文高词汇重叠但语义不一致的问题影响了现有评估方法的准确性。
- 大型语言模型(LLM)在开放域对话评估中虽有成效,但处理对抗性负例时仍面临挑战。
- 新框架结合抽象意义表示(AMR)增强领域特定语言模型(SLM)与LLM,提高语义表示学习效果。
- SLMs通过门控机制融入AMR图信息。
- SLM预测和AMR知识被整合到LLM提示中,实现稳健评估。
点此查看论文截图



