⚠️ 以下所有内容总结都来自于 大语言模型的能力,如有错误,仅供参考,谨慎使用
🔴 请注意:千万不要用于严肃的学术场景,只能用于论文阅读前的初筛!
💗 如果您觉得我们的项目对您有帮助 ChatPaperFree ,还请您给我们一些鼓励!⭐️ HuggingFace免费体验
2025-09-24 更新
Accurate Thyroid Cancer Classification using a Novel Binary Pattern Driven Local Discrete Cosine Transform Descriptor
Authors:Saurabh Saini, Kapil Ahuja, Marc C. Steinbach, Thomas Wick
In this study, we develop a new CAD system for accurate thyroid cancer classification with emphasis on feature extraction. Prior studies have shown that thyroid texture is important for segregating the thyroid ultrasound images into different classes. Based upon our experience with breast cancer classification, we first conjuncture that the Discrete Cosine Transform (DCT) is the best descriptor for capturing textural features. Thyroid ultrasound images are particularly challenging as the gland is surrounded by multiple complex anatomical structures leading to variations in tissue density. Hence, we second conjuncture the importance of localization and propose that the Local DCT (LDCT) descriptor captures the textural features best in this context. Another disadvantage of complex anatomy around the thyroid gland is scattering of ultrasound waves resulting in noisy and unclear textures. Hence, we third conjuncture that one image descriptor is not enough to fully capture the textural features and propose the integration of another popular texture capturing descriptor (Improved Local Binary Pattern, ILBP) with LDCT. ILBP is known to be noise resilient as well. We term our novel descriptor as Binary Pattern Driven Local Discrete Cosine Transform (BPD-LDCT). Final classification is carried out using a non-linear SVM. The proposed CAD system is evaluated on the only two publicly available thyroid cancer datasets, namely TDID and AUITD. The evaluation is conducted in two stages. In Stage I, thyroid nodules are categorized as benign or malignant. In Stage II, the malignant cases are further sub-classified into TI-RADS (4) and TI-RADS (5). For Stage I classification, our proposed model demonstrates exceptional performance of nearly 100% on TDID and 97% on AUITD. In Stage II classification, the proposed model again attains excellent classification of close to 100% on TDID and 99% on AUITD.
在这项研究中,我们开发了一种新的计算机辅助诊断(CAD)系统,用于对甲状腺癌进行准确分类,并重点强调特征提取。先前的研究表明,甲状腺纹理对于将甲状腺超声图像分类为不同类别非常重要。基于我们对乳腺癌分类的经验,我们首先推测离散余弦变换(DCT)是捕捉纹理特征的最佳描述符。甲状腺超声图像特别具有挑战性,因为该腺体被多个复杂的解剖结构所包围,导致组织密度变化。因此,我们第二次猜测定位的重要性,并提出局部离散余弦变换(LDCT)描述符在这种情况下最能捕捉纹理特征。甲状腺周围复杂解剖结构的另一个不利因素是导致超声波的散射,从而产生噪声和不清晰的纹理。因此,我们第三次推测一个图像描述符不足以充分捕捉纹理特征,并提出将另一种流行的纹理捕获描述符(改进的局部二值模式,ILBP)与LDCT相结合。ILBP被认为具有噪声抗性。我们将我们的新型描述符称为二进制模式驱动的局部离散余弦变换(BPD-LDCT)。最终分类是采用非线性支持向量机(SVM)进行。所提出的CAD系统是在两个公开可用的甲状腺癌数据集TDID和AUITD上进行评估的。评估分为两个阶段进行。在第一阶段,甲状腺结节被分类为良性或恶性。在第二阶段,恶性病例进一步细分为TI-RADS(4)和TI-RADS(5)。在第一阶段分类中,我们提出的模型在TDID上表现出近100%的出色性能,在AUITD上为97%。在第二阶段分类中,该模型在TDID上再次实现了接近100%的优秀分类,并在AUITD上达到了99%。
论文及项目相关链接
PDF 15 Pages, 7 Figures, 5 Tables
Summary:本研究开发了一种新的CAD系统,用于准确分类甲状腺癌,重点进行特征提取。基于甲状腺纹理的重要性及其在超声图像中的表现,结合乳腺癌分类的经验,研究认为离散余弦变换(DCT)是捕捉纹理特征的最佳描述符。考虑到甲状腺周围复杂解剖结构引起的组织密度变化和超声波散射问题,研究提出了局部离散余弦变换(LDCT)和集成另一种流行的纹理捕获描述符(ILBP)的方法。最终采用非线性支持向量机进行分类,并在两个公开可用的甲状腺癌数据集上进行评估,表现出优异的性能。
Key Takeaways:
- 研究开发了一种新型的CAD系统用于甲状腺癌症的分类。
- 利用离散余弦变换(DCT)进行特征提取以识别甲状腺纹理。
- 考虑到甲状腺周围的复杂解剖结构,提出了局部离散余弦变换(LDCT)和集成ILBP的方法以改善特征提取效果。
- 所提出的模型在两个公开数据集上的表现优异,Stage I分类准确率近乎100%,Stage II分类准确率接近99%。
点此查看论文截图




