⚠️ 以下所有内容总结都来自于 大语言模型的能力,如有错误,仅供参考,谨慎使用
🔴 请注意:千万不要用于严肃的学术场景,只能用于论文阅读前的初筛!
💗 如果您觉得我们的项目对您有帮助 ChatPaperFree ,还请您给我们一些鼓励!⭐️ HuggingFace免费体验
2025-09-29 更新
OrthoLoC: UAV 6-DoF Localization and Calibration Using Orthographic Geodata
Authors:Oussema Dhaouadi, Riccardo Marin, Johannes Meier, Jacques Kaiser, Daniel Cremers
Accurate visual localization from aerial views is a fundamental problem with applications in mapping, large-area inspection, and search-and-rescue operations. In many scenarios, these systems require high-precision localization while operating with limited resources (e.g., no internet connection or GNSS/GPS support), making large image databases or heavy 3D models impractical. Surprisingly, little attention has been given to leveraging orthographic geodata as an alternative paradigm, which is lightweight and increasingly available through free releases by governmental authorities (e.g., the European Union). To fill this gap, we propose OrthoLoC, the first large-scale dataset comprising 16,425 UAV images from Germany and the United States with multiple modalities. The dataset addresses domain shifts between UAV imagery and geospatial data. Its paired structure enables fair benchmarking of existing solutions by decoupling image retrieval from feature matching, allowing isolated evaluation of localization and calibration performance. Through comprehensive evaluation, we examine the impact of domain shifts, data resolutions, and covisibility on localization accuracy. Finally, we introduce a refinement technique called AdHoP, which can be integrated with any feature matcher, improving matching by up to 95% and reducing translation error by up to 63%. The dataset and code are available at: https://deepscenario.github.io/OrthoLoC.
从航拍视角实现精确视觉定位是一个具有映射、大面积检测以及搜救行动等多个应用场景的基础性问题。在许多场景中,这些系统需要在有限资源(例如,无网络连接或GNSS/GPS支持)的情况下实现高精度定位,使得大型图像数据库或复杂的3D模型变得不切实际。令人惊讶的是,很少有人会关注利用正射地理数据作为替代方案,这种数据既轻便又可通过政府部门的免费发布而日益获得(例如,欧洲联盟)。为了填补这一空白,我们提出了OrthoLoC,这是第一个大规模数据集,包含来自德国和美国的16,425张无人机图像,具有多种模式。该数据集解决了无人机图像和地理空间数据之间的领域转移问题。其配对结构能够公正地评估现有解决方案,通过使图像检索与特征匹配解耦,可以单独评估定位和校准性能。通过全面评估,我们研究了领域转移、数据分辨率和共视性对定位精度的影响。最后,我们介绍了一种名为AdHoP的改进技术,它可以与任何特征匹配器集成,通过提高匹配率高达95%,并减少高达63%的翻译误差。数据集和代码可在以下网址找到:https://deepscenario.github.io/OrthoLoC。
论文及项目相关链接
PDF Accepted at NeurIPS 2025
Summary
本文关注无人机在缺乏资源条件下的精准定位问题,提出利用正射地理数据作为替代方案。为此,创建大规模数据集OrthoLoC,包含德国和美国的无人机图像与多种模态数据,以解决无人机影像与地理空间数据之间的领域偏移问题。通过综合评估,研究不同因素对定位精度的影响,并引入一种改进技术AdHoP,可与任何特征匹配器集成,提高匹配精度并减少翻译错误。数据集和代码可在网上获取。
Key Takeaways
- 无人机在缺乏资源条件下的精准定位是一个关键问题,具有广泛的应用前景。
- 正射地理数据作为一种替代方案被提出,具有轻便性和通过政府免费发布而易于获取的特点。
- 创建了大规模数据集OrthoLoC,包含德国和美国的无人机图像和多种模态数据,以解决领域偏移问题。
- 配对结构使数据集能够公正地评估现有解决方案,同时独立评估定位和校准性能。
- 通过综合评估,研究影响定位精度的因素包括领域偏移、数据分辨率和共视性。
- 介绍了一种改进技术AdHoP,它可以与任何特征匹配器集成,显著提高匹配精度并减少翻译错误。
点此查看论文截图





UltraBoneUDF: Self-supervised Bone Surface Reconstruction from Ultrasound Based on Neural Unsigned Distance Functions
Authors:Luohong Wu, Matthias Seibold, Nicola A. Cavalcanti, Giuseppe Loggia, Lisa Reissner, Bastian Sigrist, Jonas Hein, Lilian Calvet, Arnd Viehöfer, Philipp Fürnstahl
Bone surface reconstruction is an essential component of computer-assisted orthopedic surgery (CAOS), forming the foundation for preoperative planning and intraoperative guidance. Compared to traditional imaging modalities such as CT and MRI, ultrasound provides a radiation-free, and cost-effective alternative. While ultrasound offers new opportunities in CAOS, technical shortcomings continue to hinder its translation into surgery. In particular, due to the inherent limitations of ultrasound imaging, B-mode ultrasound typically capture only partial bone surfaces, posing major challenges for surface reconstruction. Existing reconstruction methods struggle with such incomplete data, leading to increased reconstruction errors and artifacts. Effective techniques for accurately reconstructing open bone surfaces from real-world 3D ultrasound volumes remain lacking. We propose UltraBoneUDF, a self-supervised framework specifically designed for reconstructing open bone surfaces from ultrasound data using neural unsigned distance functions (UDFs). In addition, we present a novel loss function based on local tangent plane optimization that substantially improves surface reconstruction quality. UltraBoneUDF and competing models are benchmarked on three open-source datasets and further evaluated through ablation studies. Results: Qualitative results highlight the limitations of the state-of-the-art methods for open bone surface reconstruction and demonstrate the effectiveness of UltraBoneUDF. Quantitatively, UltraBoneUDF significantly outperforms competing methods across all evaluated datasets for both open and closed bone surface reconstruction in terms of mean Chamfer distance error: 0.96 mm on the UltraBones100k dataset (28.9% improvement compared to the state-of-the-art), 0.21 mm on the OpenBoneCT dataset (40.0% improvement), and 0.18 mm on the ClosedBoneCT dataset (63.3% improvement).
骨骼表面重建是计算机辅助骨科手术(CAOS)的重要组成部分,为术前计划和术中指导提供了基础。与CT和MRI等传统成像方式相比,超声提供了一种无辐射且成本效益高的替代方案。虽然超声在CAOS中提供了新的机会,但技术上的不足仍然阻碍了其在手术中的应用。特别是,由于超声成像的内在局限性,B模式超声通常只能捕捉到部分骨骼表面,这为表面重建带来了重大挑战。现有的重建方法在处理此类不完整数据时遇到困难,导致重建误差和伪影增加。我们提出UltraBoneUDF,这是一个专门设计用于从现实世界的3D超声体积重建开放骨骼表面的自监督框架,使用神经无符号距离函数(UDF)。此外,我们还提出了一种基于局部切线平面优化的新型损失函数,这极大地提高了表面重建的质量。UltraBoneUDF和竞争模型在三个开源数据集上进行基准测试,并通过消融研究进一步评估。结果:定性结果强调了当前开放骨骼表面重建方法的局限性,并证明了UltraBoneUDF的有效性。定量上,UltraBoneUDF在所有评估的数据集上显著优于其他方法,无论是开放还是封闭骨骼表面重建,就平均Chamfer距离误差而言:在UltraBones100k数据集上为0.96毫米(比现有技术提高了28.9%),在OpenBoneCT数据集上为0.21毫米(提高了40.0%),以及在ClosedBoneCT数据集上为0.18毫米(提高了63.3%)。
论文及项目相关链接
Summary
本文介绍了骨表面重建在电脑辅助骨科手术中的重要性,并对比了超声与传统成像模式如CT和MRI的优势。针对超声在骨表面重建中的技术短板,提出了UltraBoneUDF框架,利用神经无符号距离函数重建开放骨表面,并创新性地设计了基于局部切线平面优化的新型损失函数,以提高表面重建质量。在三个开源数据集上的实验结果显示,UltraBoneUDF在开放和闭合骨表面重建方面均显著优于其他方法。
Key Takeaways
- 骨表面重建是计算机辅助骨科手术的重要组成部分,为术前规划和术中指导提供基础。
- 超声作为一种替代传统成像模式(如CT和MRI)的技术,具有无辐射和成本效益高的优势。
- 超声在骨表面重建中仍存在技术挑战,特别是B模式超声只能捕捉部分骨表面。
- 现有重建方法对不完整数据存在困难,导致重建误差和伪影增加。
- UltraBoneUDF框架利用神经无符号距离函数解决从真实世界3D超声体积重建开放骨表面的问题。
- 新型损失函数基于局部切线平面优化,显著提高表面重建质量。
点此查看论文截图
