⚠️ 以下所有内容总结都来自于 大语言模型的能力,如有错误,仅供参考,谨慎使用
🔴 请注意:千万不要用于严肃的学术场景,只能用于论文阅读前的初筛!
💗 如果您觉得我们的项目对您有帮助 ChatPaperFree ,还请您给我们一些鼓励!⭐️ HuggingFace免费体验
2025-11-07 更新
ENDF/B-VIII.1: Updated Nuclear Reaction Data Library for Science and Applications
Authors:G. P. A. Nobre, R. Capote, M. T. Pigni, A. Trkov, C. M. Mattoon, D. Neudecker, D. A. Brown, M. B. Chadwick, A. C. Kahler, N. A. Kleedtke, M. Zerkle, A. I. Hawari, C. W. Chapman, N. C. Fleming, J. L. Wormald, K. Ramić, Y. Danon, N. A. Gibson, P. Brain, M. W. Paris, G. M. Hale, I. J. Thompson, D. P. Barry, I. Stetcu, W. Haeck, A. E. Lovell, M. R. Mumpower, G. Potel, K. Kravvaris, G. Noguere, J. D. McDonnell, A. D. Carlson, M. Dunn, T. Kawano, D. Wiarda, I. Al-Qasir, G. Arbanas, R. Arcilla, B. Beck, D. Bernard, R. Beyer, J. M. Brown, O. Cabellos, R. J. Casperson, Y. Cheng, E. V. Chimanski, R. Coles, M. Cornock, J. Cotchen, J. P. W. Crozier, D. E. Cullen, A. Daskalakis, M. -A. Descalle, D. D. DiJulio, P. Dimitriou, A. C. Dreyfuss, I. Durán, R. Ferrer, T. Gaines, V. Gillette, G. Gert, K. H. Guber, J. D. Haverkamp, M. W. Herman, J. Holmes, M. Hursin, N. Jisrawi, A. R. Junghans, K. J. Kelly, H. I. Kim, K. S. Kim, A. J. Koning, M. Koštál, B. K. Laramee, A. Lauer-Coles, L. Leal, H. Y. Lee, A. M. Lewis, J. Malec, J. I. Márquez Damián, W. J. Marshall, A. Mattera, G. Muhrer, A. Ney, W. E. Ormand, D. K. Parsons, C. M. Percher, V. G. Pronyaev, A. Qteish, S. Quaglioni, M. Rapp, J. J. Ressler, M. Rising, D. Rochman, P. K. Romano, D. Roubtsov, G. Schnabel, M. Schulc, G. J. Siemers, A. A. Sonzogni, P. Talou, J. Thompson, T. H. Trumbull, S. C. van der Marck, M. Vorabbi, C. Wemple, K. A. Wendt, M. White, R. Q. Wright
The ENDF/B-VIII.1 library is the newest recommended evaluated nuclear data file by the Cross Section Evaluation Working Group (CSEWG) for use in nuclear science and technology applications, and incorporates advances made in the six years since the release of ENDF/B-VIII.0. Among key advances made are that the $^{239}$Pu file was reevaluated by a joint international effort and that updated $^{16,18}$O, $^{19}$F, $^{28-30}$Si, $^{50-54}$Cr, $^{55}$Mn, $^{54,56,57}$Fe, $^{63,65}$Cu, $^{139}$La, $^{233,235,238}$U, and $^{240,241}$Pu neutron nuclear data from the IAEA coordinated INDEN collaboration were adopted. Over 60 neutron dosimetry cross sections were adopted from the IAEA’s IRDFF-II library. In addition, the new library includes significant changes for $^3$He, $^6$Li,$^9$Be, $^{51}$V, $^{88}$Sr, $^{103}$Rh, $^{140,142}$Ce, Dy, $^{181}$Ta, Pt, $^{206-208}$Pb, and $^{234,236}$U neutron data, and new nuclear data for the photonuclear, charged-particle and atomic sublibraries. Numerous thermal neutron scattering kernels were reevaluated or provided for the very first time. On the covariance side, work was undertaken to introduce better uncertainty quantification standards and testing for nuclear data covariances. The significant effort to reevaluate important nuclides has reduced bias in the simulations of many integral experiments with particular progress noted for fluorine, copper, and stainless steel containing benchmarks. Data issues hindered the successful deployment of the previous ENDF/B-VIII.0 for commercial nuclear power applications in high burnup situations. These issues were addressed by improving the $^{238}$U and $^{239,240,241}$Pu evaluated data in the resonance region. The new library performance as a function of burnup is similar to the reference ENDF/B-VII.1 library. The ENDF/B-VIII.1 data are available in ENDF-6 and GNDS format at https://doi.org/10.11578/endf/2571019.
ENDF/B-VIII.1库是横截面评估工作组(CSEWG)推荐的最新评估核数据文件,用于核科学和技术应用。它融合了自ENDF/B-VIII.0发布以来六年的进步。其中的关键进展包括:通过国际联合努力重新评估了$^{239}$Pu文件,并采用了国际原子能机构协调的INDEN合作更新的$^{16,18}$O、$^{19}$F、$^{28-30}$Si、$^{50-54}$Cr、$^{55}$Mn、$^{54,56,57}$Fe、$^{63,65}$Cu、$^{139}$La、$^{233,235,238}$U和$^{240,241}$Pu中子核数据。超过60个中子剂量计横截面采用了国际原子能机构的IRDFF-II库数据。此外,新库还包括对$^3$He、$^6$Li、$^9$Be、$^{51}$V、$^{88}$Sr、$^{103}$Rh、$^{140,142}$Ce、Dy、$^{181}$Ta、Pt、$^{206-208}$Pb和$^{234,236}$U的中子数据的重要更改,以及光子核、带电粒子和原子子库的新核数据。许多热中子散射核被重新评估,或为首次提供。在协方差方面,工作致力于引入更好的不确定性量化标准和核数据协方差的测试。对重要核素的重新评估工作减少了模拟许多积分实验的偏见,特别是在氟、铜和不锈钢含有基准方面取得了特别的进展。数据问题阻碍了ENDF/B-VIII.0在高燃耗情况下商业核动力应用的成功部署。通过改进共振区域的$^{238}$U和$^{239,240,241}$Pu评估数据,这些问题得到了解决。新库的性能与参考ENDF/B-VII.1库相比,随着燃耗的变化而类似。ENDF/B-VIII.1数据在https://doi.org/10.11578/endf/2571019上以ENDF-6和GNDS格式提供。
论文及项目相关链接
PDF Article associated with the ENDF/B-VIII.1 release, submitted to Nuclear Data Sheets and currently under second round of referee review. 222 pages, 61 tables, 227 figures
Summary
ENDF/B-VIII.1库是核科学与技术领域最新推荐使用的评估核数据文件,由截面评估工作组(CSEWG)发布。该库在ENDF/B-VIII.0的基础上进行了六年来的重要进展更新。更新的内容涵盖多种核素的中子数据,包括从IAEA协调的INDEN合作中重新评估的$^{239}$Pu文件以及采纳的IAEA的IRDFF-II库的超过60个中子剂量截面。此外,还进行了热中子散射核、光子核、带电粒子以及原子子库的新数据和新核素的评估。同时,对不确定性量化标准和核数据协方差测试进行了改进工作。新库的推出解决了ENDF/B-VIII.0在一些高燃耗情况下商用核动力应用中的部署问题,其性能与参考ENDF/B-VII.1库相似。
Key Takeaways
- ENDF/B-VIII.1是最新推荐的核数据文件库,由Cross Section Evaluation Working Group (CSEWG)发布。
- 该库包含多种核素的中子数据更新,包括重新评估的$^{239}$Pu文件及采纳自IAEA的IRDFF-II库的60多个中子剂量截面。
- 新库包含了热中子散射核、光子核、带电粒子及原子子库的新数据和新核素评估。
- 不确定性量化标准和核数据协方差测试方面进行了改进工作。
- 新库解决了ENDF/B-VIII.0在高燃耗情况下的部署问题,性能与ENDF/B-VII.1相似。
- 该库采用了更新的核数据文件格式(ENDF-6和GNDS格式)。
点此查看论文截图
Thor: Towards Human-Level Whole-Body Reactions for Intense Contact-Rich Environments
Authors:Gangyang Li, Qing Shi, Youhao Hu, Jincheng Hu, Zhongyuan Wang, Xinlong Wang, Shaqi Luo
Humanoids hold great potential for service, industrial, and rescue applications, in which robots must sustain whole-body stability while performing intense, contact-rich interactions with the environment. However, enabling humanoids to generate human-like, adaptive responses under such conditions remains a major challenge. To address this, we propose Thor, a humanoid framework for human-level whole-body reactions in contact-rich environments. Based on the robot’s force analysis, we design a force-adaptive torso-tilt (FAT2) reward function to encourage humanoids to exhibit human-like responses during force-interaction tasks. To mitigate the high-dimensional challenges of humanoid control, Thor introduces a reinforcement learning architecture that decouples the upper body, waist, and lower body. Each component shares global observations of the whole body and jointly updates its parameters. Finally, we deploy Thor on the Unitree G1, and it substantially outperforms baselines in force-interaction tasks. Specifically, the robot achieves a peak pulling force of 167.7 N (approximately 48% of the G1’s body weight) when moving backward and 145.5 N when moving forward, representing improvements of 68.9% and 74.7%, respectively, compared with the best-performing baseline. Moreover, Thor is capable of pulling a loaded rack (130 N) and opening a fire door with one hand (60 N). These results highlight Thor’s effectiveness in enhancing humanoid force-interaction capabilities.
类人机器人(Humanoids)在服务、工业和救援等领域具有巨大的潜力,在这些应用中,机器人需要与环境进行激烈的接触式交互同时保持全身稳定性。然而,如何让类人机器人在这种环境下产生类似人类的自适应反应仍然是一个主要挑战。为了解决这个问题,我们提出了Thor,这是一个用于接触丰富环境中人类级别的全身反应的类人机器人框架。基于机器人的力学分析,我们设计了一个力自适应躯干倾斜(FAT2)奖励函数,以鼓励类人机器人在力交互任务中表现出类似人类的反应。为了缓解类人机器人控制的高维度挑战,Thor引入了一种强化学习架构,该架构将上半身、腰部和下半身解耦。每个组件共享全身的全局观察,并共同更新其参数。最后,我们将Thor部署在Unitree G1上,它在力交互任务中大大超过了基线。具体来说,当向后移动时,机器人实现了167.7牛的峰值拉力(约占G1体重的48%),向前移动时为145.5牛。与表现最佳的基线相比,这分别提高了68.9%和74.7%。此外,Thor还能够拉动载有重物的架子(130牛)并用一只手打开防火门(60牛)。这些结果凸显了Thor在增强类人机器人力交互能力方面的有效性。
论文及项目相关链接
Summary
本文探讨了在接触丰富的环境中,人形机器人如何产生人类级别的全身反应的问题。为此,提出了一种名为Thor的人形机器人框架,并设计了一个基于机器人力分析的力自适应躯干倾斜(FAT2)奖励函数。通过强化学习架构,Thor将人形机器人的上半身、腰部和下半身解耦,每个部分共享全身的全局观察并共同更新参数。在Unitree G1机器人上的实验表明,Thor在力交互任务中的表现明显优于基线,实现了向后拉力达到167.7N(约占G1机器人本体质量的48%),向前拉力达到145.5N。此外,Thor还能拉动载重架和单手打开防火门。
Key Takeaways
- 人形机器人在服务、工业和救援等领域具有巨大的潜力,需要实现与环境的紧密接触和强烈的交互作用。
- Thor是一个用于人形机器人的框架,旨在实现人类级别的全身反应。
- 基于机器人力分析,设计了力自适应躯干倾斜(FAT2)奖励函数,以鼓励人形机器人展现出类似人类的反应。
- Thor采用强化学习架构,将人形机器人的不同部分(上半身、腰部和下半身)解耦,同时保持全身参数共享和更新。
- Thor在Unitree G1机器人上的实验表现显著优于基线,显示出强大的力交互能力。
- Thor能够在向后和向前方向上都实现了显著的拉力提升,并且具备拉动载重架和单手打开防火门的能力。
点此查看论文截图
Post Persona Alignment for Multi-Session Dialogue Generation
Authors:Yi-Pei Chen, Noriki Nishida, Hideki Nakayama, Yuji Matsumoto
Multi-session persona-based dialogue generation presents challenges in maintaining long-term consistency and generating diverse, personalized responses. While large language models (LLMs) excel in single-session dialogues, they struggle to preserve persona fidelity and conversational coherence across extended interactions. Existing methods typically retrieve persona information before response generation, which can constrain diversity and result in generic outputs. We propose Post Persona Alignment (PPA), a novel two-stage framework that reverses this process. PPA first generates a general response based solely on dialogue context, then retrieves relevant persona memories using the response as a query, and finally refines the response to align with the speaker’s persona. This post-hoc alignment strategy promotes naturalness and diversity while preserving consistency and personalization. Experiments on multi-session LLM-generated dialogue data demonstrate that PPA significantly outperforms prior approaches in consistency, diversity, and persona relevance, offering a more flexible and effective paradigm for long-term personalized dialogue generation.
基于多轮对话生成的人物对话生成面临长期一致性维护和生成多样化、个性化响应的挑战。虽然大型语言模型(LLM)在单次对话中表现出色,但在跨扩展交互中保持人物保真和对话连贯性方面却遇到困难。现有方法通常在生成响应之前检索人物信息,这可能会限制多样性并导致通用输出。我们提出一种新型的两阶段框架,即事后人格对齐(PPA)。PPA首先仅基于对话上下文生成一般响应,然后使用响应作为查询检索相关的人格记忆,最后对响应进行微调以与说话者的人格对齐。这种事后对齐策略在保持一致性和个性化的同时,促进了自然性和多样性。在多轮LLM生成对话数据上的实验表明,在一致性、多样性和人格相关性方面,PPA显著优于先前的方法,为长期个性化对话生成提供了更灵活有效的范式。
论文及项目相关链接
PDF EMNLP 2025 Findings
Summary
多会话个性化对话生成在保持长期一致性、生成多样化和个性化响应方面存在挑战。大型语言模型(LLMs)在单会话对话中表现出色,但在跨扩展交互中难以保持人格保真和对话连贯性。现有方法通常在生成响应之前检索个人信息,这可能会限制多样性和导致通用输出。我们提出后人格对齐(PPA)方法,这是一种新颖的两阶段框架,反转了这一过程。PPA首先仅根据对话上下文生成一般响应,然后使用响应作为查询检索相关的人格记忆,并最终调整响应以与说话者的人格对齐。这种事后对齐策略在保持一致性、多样性和个性化的同时,促进了自然性和多样性。在多会话LLM生成的对话数据上的实验表明,PPA在一致性、多样性和人格相关性方面显著优于先前的方法,为长期个性化对话生成提供了更灵活和有效的范式。
Key Takeaways
- 多会话个性化对话生成面临长期一致性、响应多样化和个性化挑战。
- 大型语言模型(LLMs)在单会话中表现良好,但在多会话中难以维持人格和对话连贯性。
- 现有方法通常在生成响应前检索个人信息,可能限制多样性和导致通用响应。
- 提出了一种新的两阶段框架——后人格对齐(PPA)方法。
- PPA首先根据对话上下文生成一般响应,然后检索相关人格记忆,并最后调整响应以与人格对齐。
- PPA能提升响应的自然性、多样性、一致性、和个性化。
点此查看论文截图