⚠️ 以下所有内容总结都来自于 大语言模型的能力,如有错误,仅供参考,谨慎使用
🔴 请注意:千万不要用于严肃的学术场景,只能用于论文阅读前的初筛!
💗 如果您觉得我们的项目对您有帮助 ChatPaperFree ,还请您给我们一些鼓励!⭐️ HuggingFace免费体验
2025-11-13 更新
metaTextGrad: Automatically optimizing language model optimizers
Authors:Guowei Xu, Mert Yuksekgonul, Carlos Guestrin, James Zou
Large language models (LLMs) are increasingly used in learning algorithms, evaluations, and optimization tasks. Recent studies have shown that using LLM-based optimizers to automatically optimize model prompts, demonstrations, predictions themselves, or other components can significantly enhance the performance of AI systems, as demonstrated by frameworks such as DSPy and TextGrad. However, optimizers built on language models themselves are usually designed by humans with manual design choices; optimizers themselves are not optimized. Moreover, these optimizers are general purpose by design, to be useful to a broad audience, and are not tailored for specific tasks. To address these challenges, we propose metaTextGrad, which focuses on designing a meta-optimizer to further enhance existing optimizers and align them to be good optimizers for a given task. Our approach consists of two key components: a meta prompt optimizer and a meta structure optimizer. The combination of these two significantly improves performance across multiple benchmarks, achieving an average absolute performance improvement of up to 6% compared to the best baseline.
大型语言模型(LLM)在学习算法、评估和优化任务中的使用越来越广泛。最近的研究表明,利用基于LLM的优化器自动优化模型提示、演示、预测本身或其他组件,可以显著提高AI系统的性能,如DSPy和TextGrad等框架所示。然而,基于语言模型本身的优化器通常是由人类根据手动设计选择设计的,优化器本身并没有被优化。此外,这些优化器在设计上是通用的,旨在对广大用户有用,并不是针对特定任务定制的。为了解决这些挑战,我们提出了metaTextGrad,它专注于设计一种元优化器,以进一步提升现有优化器的性能,并使其成为给定任务的优秀优化器。我们的方法包括两个关键组成部分:元提示优化器和元结构优化器。这两者的结合在多个基准测试上显著提高了性能,与最佳基准相比,平均绝对性能提高了高达6%。
论文及项目相关链接
PDF 21 pages, 2 figures
Summary
大型语言模型(LLM)在算法优化中的应用越来越广泛,基于LLM的优化器用于自动优化模型提示、演示等组件可以显著提高AI系统的性能。为解决通用优化器的问题,提出一种元文本梯度优化器metaTextGrad,包含元提示优化器和元结构优化器两部分,能在多个基准测试中实现平均绝对性能提升高达6%。
Key Takeaways
- 大型语言模型(LLM)在算法优化中的应用日益广泛。
- 基于LLM的优化器能显著提高AI系统的性能。
- 现有优化器通常通过人工设计选择,缺乏自动化和针对性。
- 提出一种元文本梯度优化器metaTextGrad,由元提示优化器和元结构优化器组成。
- metaTextGrad可显著提高多个基准测试的性能。