⚠️ 以下所有内容总结都来自于 大语言模型的能力,如有错误,仅供参考,谨慎使用
🔴 请注意:千万不要用于严肃的学术场景,只能用于论文阅读前的初筛!
💗 如果您觉得我们的项目对您有帮助 ChatPaperFree ,还请您给我们一些鼓励!⭐️ HuggingFace免费体验
2025-11-27 更新
ContextFlow: Training-Free Video Object Editing via Adaptive Context Enrichment
Authors:Yiyang Chen, Xuanhua He, Xiujun Ma, Yue Ma
Training-free video object editing aims to achieve precise object-level manipulation, including object insertion, swapping, and deletion. However, it faces significant challenges in maintaining fidelity and temporal consistency. Existing methods, often designed for U-Net architectures, suffer from two primary limitations: inaccurate inversion due to first-order solvers, and contextual conflicts caused by crude “hard” feature replacement. These issues are more challenging in Diffusion Transformers (DiTs), where the unsuitability of prior layer-selection heuristics makes effective guidance challenging. To address these limitations, we introduce ContextFlow, a novel training-free framework for DiT-based video object editing. In detail, we first employ a high-order Rectified Flow solver to establish a robust editing foundation. The core of our framework is Adaptive Context Enrichment (for specifying what to edit), a mechanism that addresses contextual conflicts. Instead of replacing features, it enriches the self-attention context by concatenating Key-Value pairs from parallel reconstruction and editing paths, empowering the model to dynamically fuse information. Additionally, to determine where to apply this enrichment (for specifying where to edit), we propose a systematic, data-driven analysis to identify task-specific vital layers. Based on a novel Guidance Responsiveness Metric, our method pinpoints the most influential DiT blocks for different tasks (e.g., insertion, swapping), enabling targeted and highly effective guidance. Extensive experiments show that ContextFlow significantly outperforms existing training-free methods and even surpasses several state-of-the-art training-based approaches, delivering temporally coherent, high-fidelity results.
无训练视频对象编辑旨在实现精确的对象级操作,包括对象插入、替换和删除。然而,它在保持保真度和时间一致性方面面临重大挑战。现有方法通常针对U-Net架构设计,存在两个主要局限:由于一阶求解器导致的不准确反转,以及由粗糙的“硬”特征替换引起的上下文冲突。在扩散转换器(DiTs)中,这些问题更具挑战性,先前层次选择启发式的不适用性使得有效指导变得困难。为了解决这些局限性,我们引入了ContextFlow,这是一种用于DiT基无训练视频对象编辑的新型框架。具体来说,我们首先采用高阶Rectified Flow求解器来建立稳健的编辑基础。我们框架的核心是自适应上下文丰富(用于指定要编辑的内容),这是一种解决上下文冲突的机制。它并非替换特征,而是丰富自注意力上下文,通过并行重建和编辑路径中的键值对拼接,使模型能够动态融合信息。此外,为了确定应用此丰富的位置(用于指定编辑的位置),我们提出了一种系统、数据驱动的分析方法,以识别特定任务的关键层次。基于新型指导响应度量,我们的方法准确指出了不同任务(如插入、替换)中最具影响力的DiT块,实现了有针对性的和高效的指导。大量实验表明,ContextFlow在无训练方法中表现突出,甚至超越了一些基于训练的最先进方法,产生了时间连贯、高保真度的结果。
论文及项目相关链接
PDF The project page is at https://yychen233.github.io/ContextFlow-page
Summary
本文介绍了一种基于Diffusion Transformer(DiT)的新型训练外视频对象编辑框架ContextFlow。针对现有方法的局限性和挑战,ContextFlow采用高阶Rectified Flow求解器建立稳固的编辑基础,通过自适应上下文丰富机制解决上下文冲突问题,并动态融合信息。此外,基于新的指导响应度量,ContextFlow能够确定哪些DiT块对特定任务最有影响力,以实现精准的目标指导。ContextFlow的实验结果显示其在不训练的情况下显著优于现有方法,甚至超越了某些基于训练的前沿技术,并能产生时序连贯、高保真度的结果。
Key Takeaways
- ContextFlow是一个针对Diffusion Transformer(DiT)的新型训练外视频对象编辑框架。
- ContextFlow采用高阶Rectified Flow求解器建立稳固的编辑基础,以提高准确性。
- 自适应上下文丰富机制解决了上下文冲突问题,避免了“硬”特征替换带来的问题。
- ContextFlow通过动态融合信息提高模型性能。
- 基于新的指导响应度量,ContextFlow能精准确定针对特定任务的最具影响力的DiT块。
- ContextFlow在不训练的情况下显著优于现有方法,且能产出高保真度的结果。