⚠️ 以下所有内容总结都来自于 大语言模型的能力,如有错误,仅供参考,谨慎使用
🔴 请注意:千万不要用于严肃的学术场景,只能用于论文阅读前的初筛!
💗 如果您觉得我们的项目对您有帮助 ChatPaperFree ,还请您给我们一些鼓励!⭐️ HuggingFace免费体验
2025-11-27 更新
HunyuanOCR Technical Report
Authors: Hunyuan Vision Team, Pengyuan Lyu, Xingyu Wan, Gengluo Li, Shangpin Peng, Weinong Wang, Liang Wu, Huawen Shen, Yu Zhou, Canhui Tang, Qi Yang, Qiming Peng, Bin Luo, Hower Yang, Houwen Peng, Hongming Yang, Senhao Xie, Binghong Wu, Mana Yang, Sergey Wang, Raccoon Liu, Dick Zhu, Jie Jiang, Linus, Han Hu, Chengquan Zhang
This paper presents HunyuanOCR, a commercial-grade, open-source, and lightweight (1B parameters) Vision-Language Model (VLM) dedicated to OCR tasks. The architecture comprises a Native Vision Transformer (ViT) and a lightweight LLM connected via an MLP adapter. HunyuanOCR demonstrates superior performance, outperforming commercial APIs, traditional pipelines, and larger models (e.g., Qwen3-VL-4B). Specifically, it surpasses current public solutions in perception tasks (Text Spotting, Parsing) and excels in semantic tasks (IE, Text Image Translation), securing first place in the ICDAR 2025 DIMT Challenge (Small Model Track). Furthermore, it achieves state-of-the-art (SOTA) results on OCRBench among VLMs with fewer than 3B parameters. HunyuanOCR achieves breakthroughs in three key aspects: 1) Unifying Versatility and Efficiency: We implement comprehensive support for core capabilities including spotting, parsing, IE, VQA, and translation within a lightweight framework. This addresses the limitations of narrow “OCR expert models” and inefficient “General VLMs”. 2) Streamlined End-to-End Architecture: Adopting a pure end-to-end paradigm eliminates dependencies on pre-processing modules (e.g., layout analysis). This fundamentally resolves error propagation common in traditional pipelines and simplifies system deployment. 3) Data-Driven and RL Strategies: We confirm the critical role of high-quality data and, for the first time in the industry, demonstrate that Reinforcement Learning (RL) strategies yield significant performance gains in OCR tasks. HunyuanOCR is officially open-sourced on HuggingFace. We also provide a high-performance deployment solution based on vLLM, placing its production efficiency in the top tier. We hope this model will advance frontier research and provide a solid foundation for industrial applications.
本文介绍了亨源OCR,这是一个商业级、开源、轻量级(1B参数)的专门用于OCR任务的视觉语言模型(VLM)。其架构包括通过MLP适配器连接的本地视觉转换器(ViT)和轻量级LLM。亨源OCR展示了卓越的性能,超越了商业API、传统管道和大型模型(例如Qwen3-VL-4B)。具体来说,它在感知任务(文本点识别、解析)上超越了当前公共解决方案,并在语义任务(信息提取、文本图像翻译)方面表现出色,在ICDAR 2025 DIMT挑战赛中荣获第一名(小型模型赛道)。此外,在OCRBench中,它在参数少于3B的VLM中实现了最先进的技术结果。亨源OCR在三个方面取得了突破:1)统一了多样性和效率:我们在轻量级框架内实现了对点识别、解析、信息提取、视觉问答和翻译等核心能力的全面支持。这解决了“OCR专家模型”的局限性以及“通用VLM”的效率低下问题。2)端到端的简化架构:采用纯粹的端到端范式消除了对预处理模块(例如布局分析)的依赖。这从根本上解决了传统管道中常见的错误传播问题,并简化了系统部署。3)数据驱动和强化学习策略:我们确认了高质量数据的关键作用,并在业界首次证明强化学习(RL)策略在OCR任务中产生显著的性能提升。亨源OCR已在HuggingFace上正式开源。我们还提供了基于vLLM的高性能部署解决方案,使其生产效率处于顶级。我们希望该模型能推动前沿研究并为工业应用提供坚实的基础。
论文及项目相关链接
Summary
本文介绍了HunyuanOCR,这是一款针对OCR任务的商业级、开源、轻量级(1B参数)的跨视觉语言模型(VLM)。它结合了原生视觉转换器(ViT)和轻量级LLM,通过MLP适配器连接。HunyuanOCR在OCR任务上表现出卓越的性能,超越了商业API、传统管道和更大规模的模型(如Qwen3-VL-4B)。它在感知任务(文本点识别、解析)上超越了当前公共解决方案,并在语义任务(信息提取、文本图像翻译)方面表现出色,在ICDAR 2025 DIMT挑战赛中荣获第一名(小型模型赛道)。此外,在OCRBench上,它在参数少于3B的VLM中实现了最先进的成果。HunyuanOCR在三个方面取得了突破:1)统一了多功能性和效率;2)简化的端到端架构;3)数据驱动和强化学习策略。该模型已在HuggingFace上正式开源,并提供基于vLLM的高性能部署解决方案,生产效率处于顶级水平。
Key Takeaways
- HunyuanOCR是一个针对OCR任务的商业级、开源、轻量级的Vision-Language Model (VLM)。
- HunyuanOCR结合了Native Vision Transformer (ViT)和轻量级LLM,通过MLP适配器连接,表现出卓越性能。
- HunyuanOCR在感知任务和语义任务上均表现出色,并在ICDAR 2025 DIMT挑战赛中荣获第一名。
- 该模型实现了端到端的简化架构,消除了对传统管道的错误传播的依赖,并简化了系统部署。
- 数据驱动和强化学习策略在OCR任务中产生了显著的性能提升。
- HunyuanOCR已在HuggingFace上开源,并提供了基于vLLM的高性能部署解决方案。